Punjab University
Journal of Mathematics (ISSN 1016-2526)
Vol. 46(1) (2014) pp. 59-65

Two Torsion Free Prime Gamma Rings With Jordan Left Derivations

A. K. Halder
Department of Mathematics
University of Rajshahi
Rajshahi-6205, Bangladesh
halderamitabh@yahoo.com
A. C. Paul
Department of Mathematics
University of Rajshahi
Rajshahi-6205, Bangladesh
acpaulrubd_math@yahoo.com

Abstract

Let M be a 2-torsion free prime Γ-ring and X a nonzero faithful and prime ΓM-module. Then the existence of a nonzero Jordan left derivation $d: M \rightarrow X$ satisfying some appropriate conditions implies M is commutative. M is also commutative in the case that $d: M \rightarrow M$ is a derivation along with some suitable assumptions.

AMS (MOS) Subject Classification Codes: 03E72, 54A40, 54B15

Key Words: n-torsion free, Jordan left derivations, prime Γ-rings, faithful ΓM-modules, commutativity.

1. Introduction

Let M and Γ be additive abelian groups. M is said to be a Γ-ring if there exists a mapping $M \times \Gamma \times M \rightarrow M$ (sending (x, α, y) into $x \alpha y$) such that
(a) $(x+y) \alpha z=x \alpha z+y \alpha z$, $x(\alpha+\beta) y=x \alpha y+x \beta y$, $x \alpha(y+z)=x \alpha y+x \alpha z$, (b) $(x \alpha y) \beta z=x \alpha(y \beta z)$, for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.
M is commutative if $a \alpha b=b \alpha a$, for all $a, b \in M$ and $\alpha \in \Gamma$. A subset A of a Γ-ring M is a left(right) ideal of M if A is an additive subgroup of M and $M \Gamma A$, the set of all $m \alpha a$ such that $m \in M, \alpha \in \Gamma$ and $a \in A(A \Gamma M)$ is contained in A. An ideal P of a Γ-ring M is prime if $P \neq M$ and for any ideals A and B of $M, A \Gamma B \subseteq P$, then $A \subseteq P$ or $B \subseteq P . M$ is prime if $a \Gamma M \Gamma b=0$ with $a, b \in M$, then $a=0$ or $b=0 . M$ is semiprime if $a \Gamma M \Gamma a=0$ with $a \in M$, then $a=0 . M$ is of characteristic not equal to n (or, n-torsion free) if $n m=0$, for $m \in M$ implies $m=0$, where n is an integer. The commutator $a \alpha x-x \alpha a$, for all $a \in M, x \in X$ and $\alpha \in \Gamma$ is denoted by $[a, x]_{\alpha}$. An element a in a Γ-ring M is called nilpotent if $(a \alpha)^{n} a=0$, for all $\alpha \in \Gamma$ and for some n. The kernel of a derivation d on a Γ-ring M is denoted by $\operatorname{Ker} d$ and defined by $\operatorname{Ker} d=\{a \in M: d(a)=0\}$. The
subset $Z(M)=\{a \in M: a \alpha b=b \alpha a$, for any $b \in M$ and $\alpha \in \Gamma\}$ is called the centre of a Γ-ring M.
Let M be a Γ-ring and let X be an additive abelian group. X is called a ΓM-module if there exists a mapping $M \times \Gamma \times X \rightarrow X$ (sending (m, α, x) into $m \alpha x$) such that
$(a)\left(m_{1}+m_{2}\right) \alpha x=m_{1} \alpha x+m_{2} \alpha x$
$m(\alpha+\beta) x=m \alpha x+m \beta x$
$m \alpha\left(x_{1}+x_{2}\right)=m \alpha x_{1}+m \alpha x_{2}$
$(b)\left(m_{1} \alpha m_{2}\right) \beta x=m_{1} \alpha\left(m_{2} \beta x\right)$,
for all $m, m_{1}, m_{2} \in M, \alpha, \beta \in \Gamma, x, x_{1}, x_{2} \in \Gamma$.
X is faithful if $X \Gamma a=0$ forces $a=0 . X$ is prime if $m \Gamma M \Gamma x=0$, for $m \in M$ and $x \in X$ implies that either $x=0$ or $m \Gamma X=0$. An additive mapping $d: M \rightarrow M$ is a derivation if $d(a \alpha b)=a \alpha d(b)+d(a) \alpha b$, a left derivation if $d(a \alpha b)=a \alpha d(b)+b \alpha d(a)$, a Jordan derivation if $d(a \alpha a)=a \alpha d(a)+d(a) \alpha a$ and a Jordan left derivation if $d(a \alpha a)=$ $2 a \alpha d(a)$, for all $a, b \in M$ and $\alpha \in \Gamma$.
Y. Ceven [4] worked on Jordan left derivations on completely prime Γ-rings. He investigated the existence of a nonzero Jordan left derivation on a completely prime Γ-ring M that makes M commutative if $a \alpha b \beta c=a \beta b \alpha c$, for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$. With the same assumption, he showed that every Jordan left derivation on a completely prime Γ-ring is a left derivation on it. In this paper, he gave an example of Jordan left derivation for Γ-rings.
Mustafa Asci and Sahin Ceran [7] studied on a nonzero left derivation d on a prime Γ-ring M for which M is commutative with the conditions $d(U) \subseteq U$ and $d^{2}(U) \subseteq Z$, where U is an ideal of M and Z is the centre of M. They also proved the commutativity of M by the nonzero left derivation d_{1} and right derivation d_{2} on M with the conditions $d_{2}(U) \subseteq U$ and $d_{1} d_{2}(U) \subseteq Z$.
In [9], Sapanci and Nakajima defined a derivation and a Jordan derivation on Γ-rings and investigated a Jordan derivation on a certain type of completely prime Γ-ring which is a derivation. They also gave examples of a derivation and a Jordan derivation of Γ-rings.
Bresar and Vukman [2] proved that a Jordan derivation on a prime Γ-ring is a derivation. Furthermore, in [3], Bresar and Vukman showed that the existence of a nonzero Jordan left derivation of R into X implies R is commutative, where R is a ring and X is 2-torsion free and 3-torsion free left R-module. In [6], Jun and Kim proved their results without the property 3-torsion free.
Qing Deng [5] worked on Jordan left derivations d of prime ring R of characteristic not 2 into a nonzero faithful and prime left R-module X. He proved the commutativity of R with the Jordan left derivation d.
Joso Vukman [10] studied on Jordan left derivations on semiprime rings.
In this paper, we prepare a note on the basis of the results of Qing Deng [5] in Γ-rings. We show that the existence of a nonzero Jordan left derivation d on a 2-torsion free prime Γ-ring M into a faithful and prime ΓM-module X gives the commutativity of M. We also obsereve the commutativity of M when $d: M \rightarrow M$ is derivation.
Throughout this paper, we shall treat $a \alpha b \beta c=a \beta b \alpha c$, for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$, as (*).

2. Jordan Left Derivations

In order to equare our main results, we use some steps as lemmas.

Lemma 1. Suppose that X is a faithful and prime ΓM-module. Let $a, b \in M$ and $x \in X$. If (the prime Γ-ring) M is 2-torsion free satisfying $\left(^{*}\right.$) and $a \alpha m \beta b \gamma m \delta x=0$, for all $m \in M$ and $\alpha, \beta, \gamma, \delta \in \Gamma$, then $a=0$ or $b=0$ or $x=0$.

Proof. We use the hypothesis

$$
a \alpha m \beta b \gamma m \delta x=0,
$$

for all $a, b, m \in M, x \in X$ and $\alpha, \beta, \gamma, \delta \in \Gamma$.
Replacing m by $u+v$ in the above equation and then putting $v=m \beta a \alpha m \beta b \gamma m$, we get $a \alpha u \beta b \gamma m \beta a \alpha m \beta b \gamma m \delta x+a \alpha m \beta a \alpha m \beta b \gamma m \beta b \gamma u \delta x=0$.This gives $a \alpha m \beta a \alpha m \beta b \gamma m \beta$ $b \gamma u \delta x=0$, for all $a, b, m, u \in M, x \in X$ and $\alpha, \beta, \gamma, \delta \in \Gamma$. If $x=0$, we are done. Suppose that $x \neq 0$. Since X is faithful and prime, then $(a \alpha m \beta a) \alpha m \beta(b \gamma m \beta b)=0$, for all $a, b, m \in M$ and $\alpha, \beta, \gamma \in \Gamma$. Primeness of M gives $a \alpha m \beta a=0$ or $b \gamma m \beta b=0$, and consequently, $a=0$ or $b=0$.

Lemma 2. Let M be a Γ-ring satisfying $\left(^{*}\right)$ and of characteristic not 3. If X is a 2-torsion free ΓM-module and $d: M \rightarrow X$ is a Jordan left derivation, then for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$,
(a) $d(a \alpha b+b \alpha a)=2 a \alpha d(b)+2 b \alpha d(a)$,
(b) $d(a \alpha b \beta a)=a \beta a \alpha d(b)-b \alpha a \beta d(a)$,
(c) $d(a \alpha b \beta c+c \alpha b \beta a)=(a \beta c+c \beta a) \alpha d(b)-b \alpha a \beta d(c)-b \alpha c \beta d(a)$.

The Proof is obtained in Y. Ceven [4] by using the condition that M is of characteristic not 3.

Define $D_{\alpha}(x)=[a, x]_{\alpha}$, for all $a, x \in M$ and $\alpha \in \Gamma$.

Lemma 3. Let M be a Γ-ring which satisfies (*) and let $a \in M$ be a fixed element. Then
(a) $D_{\alpha}(x)$ is a derivation,
(b) $D_{\alpha} D_{\beta}(x)=a \alpha D_{\beta}(x)-D_{\beta}(x) \alpha a$,
(c) $D_{\alpha} D_{\beta}(x)=D_{\beta} D_{\alpha}(x)$,
(d) $D_{\alpha} D_{\beta}(x \gamma y)=D_{\alpha} D_{\beta}(x) \gamma y+2 D_{\alpha}(x) \beta D_{\gamma}(y)+x \gamma D_{\alpha} D_{\beta}(y)$, for all $x, y \in M$ and $\alpha, \beta, \gamma \in \Gamma$.

Proof. (a) For all $x, y \in M$ and $\alpha, \beta \in \Gamma$ and using (*), we have

$$
\begin{aligned}
D_{\alpha}(x \beta y) & =[a, x \beta y]_{\alpha} \\
& =[a, x]_{\alpha} \beta y+x \alpha[a, y]_{\beta} \\
& =D_{\alpha}(x) \beta y+x \alpha D_{\beta}(y) .
\end{aligned}
$$

(b) By definition, we have

$$
\begin{aligned}
D_{\alpha} D_{\beta}(x) & =D_{\alpha}\left([a, x]_{\beta}\right) \\
& =\left[a[a, x]_{\beta}\right]_{\alpha} \\
& =a \alpha[a, x]_{\beta}-[a, x]_{\beta} \alpha a \\
& =a \alpha D_{\beta}(x)-D_{\beta}(x) \alpha a,
\end{aligned}
$$

for all $a, x \in M$ and $\alpha, \beta \in \Gamma$.
(c) Using (*), we get

$$
\begin{aligned}
D_{\alpha} D_{\beta}(x) & =D_{\alpha}\left([a, x]_{\beta}\right) \\
& =\left[a,[a, x]_{\beta}\right]_{\alpha} \\
& =a \alpha(a \beta x-x \beta a)-(a \beta x-x \beta a) \alpha a \\
& =a \beta(a \alpha x-x \alpha a)-(a \alpha x-x \alpha a) \beta a \\
& =\left[a,[a, x]_{\alpha}\right]_{\beta} \\
& =D_{\beta}\left([a, x]_{\alpha}\right) \\
& =D_{\beta} D_{\alpha}(x)
\end{aligned}
$$

for all $a, x \in M$ and $\alpha, \beta \in \Gamma$.
(d) By (b) and (*), we have

$$
\begin{aligned}
D_{\alpha} D_{\beta}(x \gamma y) & =a \alpha a \beta x \gamma y-a \alpha x \gamma y \beta a-a \beta x \gamma y \alpha a+x \gamma y \beta a \alpha a \\
& =(a \alpha a \beta x-a \alpha x \beta a-a \beta x \alpha a+x \beta a \alpha a) \gamma y \\
& +2 a \alpha x \beta(a \gamma y-y \gamma a)-2 x \alpha a \beta(a \gamma y-y \gamma a) \\
& +x \gamma(a \alpha a \beta y-a \alpha y \beta a-a \beta y \alpha a+y \beta a \alpha a) \\
& =D_{\alpha} D_{\beta}(x) \gamma y+2(a \alpha x-x \alpha a) \beta(a \gamma y-y \gamma a)+x \gamma D_{\alpha} D_{\beta}(x) \\
& =D_{\alpha} D_{\beta}(x) \gamma y+2 D_{\alpha}(x) \beta D_{\gamma}(y)+x \gamma D_{\alpha} D_{\beta}(y),
\end{aligned}
$$

for all $x, y \in M$ and $\alpha, \beta, \gamma \in \Gamma$.
Lemma 4. Let M be a Γ-ring satisfying (*) and of characteristic not 3 , and $d: M \rightarrow X$ a Jordan left derivation, where X is a faithful and prime ΓM-module. If $d(a) \neq 0$, for some $a \in M$, then $\left[a,[a, b]_{\beta}\right]_{\alpha} \gamma\left[a,[a, b]_{\beta}\right]_{\alpha}=0$, for all $b \in M$ and $\alpha, \beta, \gamma \in \Gamma$.

Proof. Let $a \in M$ be a fixed element.
By Lemma 3, we have

$$
\begin{equation*}
D_{\alpha} D_{\beta}(x)=a \alpha(a \beta x-x \beta a)-(a \beta x-x \beta a) \alpha a \tag{2.1}
\end{equation*}
$$

for all $x \in M$ and $\alpha, \beta \in \Gamma$.
$\operatorname{Using}\left({ }^{*}\right)$ in $(a \alpha b-b \alpha a) \beta a \alpha D(a)=a \alpha(a \alpha b-b \alpha a) \beta D(a)$, for all $a, b \in M$ and $\alpha, \beta \in \Gamma$ [Y. Ceven, Lemma 2.2(i)], we obtain

$$
\begin{equation*}
(a \alpha(a \beta x-x \beta a)-(a \beta x-x \beta a) \alpha a) \alpha d(a)=0 \tag{2.2}
\end{equation*}
$$

for all $x \in M$ and $\alpha, \beta \in \Gamma$.
From (2.1) and (2.2), we get

$$
\begin{equation*}
D_{\alpha} D_{\beta}(x) \alpha d(a)=0 \tag{2.3}
\end{equation*}
$$

for all $x \in M$ and $\alpha, \beta \in \Gamma$.
By Lemma 3(d) and (2.3), we have

$$
\begin{equation*}
\left(D_{\alpha} D_{\beta}(x) \gamma y+2 D_{\alpha}(x) \beta D_{\gamma}(y)\right) \alpha d(a)=0 \tag{2.4}
\end{equation*}
$$

for all $x, y \in M$ and $\alpha, \beta, \gamma \in \Gamma$.
Replacing y by $D_{\alpha}(y \beta z)$ in (2.4) and by Lemma 3(a), we obtain

$$
\begin{equation*}
\left(D_{\alpha} D_{\beta}(x) \gamma\left(D_{\alpha}(y) \beta z+y \alpha D_{\beta}(z)\right)+2 D_{\alpha}(x) \beta D_{\gamma}\left(D_{\alpha}(y \beta z)\right)\right) \alpha d(a)=0 \tag{2.5}
\end{equation*}
$$

Using Lemma 3(c) in (2.5), and then using (2.3), we get

$$
\begin{equation*}
\left(D_{\alpha} D_{\beta}(x) \gamma\left(D_{\alpha}(y) \beta z+y \alpha D_{\beta}(z)+D_{\alpha} D_{\beta}(x) \gamma y \alpha D_{\beta}(z)\right)\right) \alpha d(a)=0 \tag{2.6}
\end{equation*}
$$

Replacing $D_{\alpha}(z)$ for z in (2.6) and then by Lemma 3(c) and (2.3), we obtain

$$
\begin{equation*}
\left(D_{\alpha} D_{\beta}(x) \gamma D_{\alpha}(y) \alpha D_{\beta}(z)\right) \alpha d(a)=0 \tag{2.7}
\end{equation*}
$$

Replacing y by $D_{\alpha}(y)$ in (2.6), and then by Lemma 3(c) and (2.7), we get

$$
\begin{equation*}
\left(D_{\alpha} D_{\beta}(x)\right) \gamma\left(D_{\alpha} D_{\beta}(y)\right) \alpha z \alpha d(a)=0 \tag{2.8}
\end{equation*}
$$

Since (2.8) holds for all $z \in M$, we are forced to conclude that $d \neq 0$ implies

$$
\left(D_{\alpha} D_{\beta}(x)\right) \gamma\left(D_{\alpha} D_{\beta}(y)\right)=0
$$

for all $x, y \in M$ and $\alpha, \beta, \gamma \in \Gamma$.
In particular, $\left(D_{\alpha} D_{\beta}(b)\right) \gamma\left(\left(D_{\alpha} D_{\beta}(b)\right)=0\right.$, for all $b \in M$ and $\alpha, \beta, \gamma \in \Gamma$.
This gives $\left[a,[a, x]_{\beta}\right]_{\alpha} \gamma\left[a,[a, x]_{\beta}\right]_{\alpha}=0$, for all $x \in M$ and $\alpha, \beta, \gamma \in \Gamma$.
Lemma 5. Let M be a prime Γ-ring satisfying (*) and of characteristic not 3. Suppose that X is a faithful and prime ΓM-module. If there exists a nonzero Jordan left derivation $d: M \rightarrow X$, then M has no nonzero nilpotent elements(more precisely, M has no nonzero zero divisors).

Proof. We shall prove this lemma by contradictory supposition. Suppose that M contains a nonzero element a with $a \alpha a=0$, for all $\alpha \in \Gamma$. Then $0=d(a \alpha a)=2 a \alpha d(a)$ and so

$$
\begin{equation*}
a \alpha d(a)=0 \tag{2.9}
\end{equation*}
$$

for all $\alpha \in \Gamma$.
Replacing c by b βa in Lemma 2(c) and then using $\left(^{*}\right)$ and $a \alpha d(a)=0$, we have

$$
\begin{aligned}
d(a \alpha b \beta b \beta a)+d(b \beta a \alpha b \beta a) & =d(a \alpha b \beta b \beta a+b \beta a \alpha b \beta a) \\
& =(a \beta b \beta a+b \beta a \beta a) \alpha d(b)-b \alpha a \beta d(b \beta a)-b \alpha b \beta a \beta d(a) .
\end{aligned}
$$

Thus

$$
\begin{equation*}
d(a \alpha b \beta b \beta a)+d(b \beta a \alpha b \beta a)=a \beta b \beta a \alpha d(b) \tag{2.10}
\end{equation*}
$$

Lemma 2(b) with $a \alpha a=0$ and $a \alpha d(a)=0$ gives $d(a \alpha b \beta a)=0$. Replacing b by $b \beta b$, we obtain $d(a \alpha b \beta b \beta a)=0$. Again $d(b \beta a \alpha b \beta a)=2 b \beta a \alpha d(b \beta a)=0$. Thus using $d(a \alpha b \beta b \beta a)=0$ and $d(b \beta a \alpha b \beta a)=0$ in (10), we get

$$
\begin{equation*}
a \beta b \beta a \alpha d(b)=0 \tag{2.11}
\end{equation*}
$$

Replacing b by $b+c$ in (2.11), and using (*), we obtain

$$
\begin{equation*}
a \alpha b \beta a \beta d(c)+a \alpha c \beta a \beta d(b)=0 \tag{2.12}
\end{equation*}
$$

for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$.
Replacing $a \gamma c+c \gamma a$ for c in (2.12), after that by Lemma 2(a), $a \alpha a=0$ and (*), we get $a \alpha b \beta a \beta c \gamma d(a)=0$, for all $a, b, c \in M$ and $\alpha, \beta, \gamma \in \Gamma$ and so by Lemma 1,

$$
\begin{equation*}
d(a)=0 \tag{2.13}
\end{equation*}
$$

Interchanging a and b in Lemma 2(b) and then by (2.13) and $a \alpha d(a)=0$, we get $d(b \alpha a \beta b)$ $=0$. This implies that

$$
\begin{equation*}
a \alpha c \beta a \beta d(b \alpha a \beta b)=0, \tag{2.14}
\end{equation*}
$$

for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$. Replacing b by $b \alpha a \beta b$ in (2.12) and using (2.14), we get $a \alpha b \alpha a \beta b \beta a \beta d(c)=0$, for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$. This implies that $a \beta d(c)=0$, by Lemma 1. Replacing c by $c \alpha c$ in $a \beta d(c)=0$, and then using $(*)$, we have

$$
\begin{equation*}
a \alpha c \beta d(c)=0 \tag{2.15}
\end{equation*}
$$

for all $a, c \in M$ and $\alpha, \beta \in \Gamma$.
Replacing c by $b+c$ in (16), we get $a \alpha b \beta d(c)+a \alpha c \beta d(b)=0$. Again, replacing c by $a \alpha c$ in $a \alpha b \beta d(c)+a \alpha c \beta d(b)=0$ and using $a \alpha a=0$, we get $a \alpha b \beta d(a \alpha c)=0$, for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$. This implies that $d(a \alpha c)=0$, by the faithfulness and the primeness of X.
Applying $d(a)=0$ and $a \alpha d(c)=0$, we obtain $d(a \alpha c)=d(c \alpha a+a \alpha c)=2 c \alpha d(a)+$ $2 a \alpha d(c)$. Replacing a by $b \beta a$ in $d(c \alpha a)=0$ and c by $b \beta c$ in $d(a \alpha c)=0$ and adding the obtained results, we have

$$
\begin{equation*}
d(a \alpha b \beta c+c \alpha b \beta a)=0 \tag{2.16}
\end{equation*}
$$

for all $a, b \in M$ and $\alpha, \beta \in \Gamma$.
The faithfulness and primeness of X and $\left(^{*}\right)$ in (2.11) gives $a \beta d(b)=0$. With the help of the Lemma 2(c) and $a \beta d(b)=0,(2.16)$ gives $a \alpha c \beta d(b)=0$, for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$. Hence $d(b)=0$, for all $b \in M$. But this is a contradiction.

We now state and prove our main result.
Theorem 6. Let M be a prime Γ-ring satisfying (*) and of characteristic not 2, and X a nonzero left ΓM-module. Suppose that X is faithful and prime. If there exists a nonzero Jordan left derivation $d: M \rightarrow X$, then M is commutative.

Proof. In order to develop [1, Theorem 2.2], it suffices to consider the case that M is of characteristic not 3. Consider an element $a \in M$ such that $d(a) \neq 0$. Then by Lemma 4, we get $\left[a,[a, b]_{\beta}\right]_{\alpha} \gamma\left[a,[a, b]_{\beta}\right]_{\alpha}=0$, for all $b \in M$ and $\alpha, \beta, \gamma \in \Gamma$. By Lemma 5, we get $\left[a,[a, b]_{\beta}\right]_{\alpha}=0$, for all $b \in M$ and $\alpha, \beta \in \Gamma$. This implies that $a \alpha[a, b]_{\beta}=[a, b]_{\beta} \alpha a$, for all $b \in M$ and $\alpha, \beta \in \Gamma$ and so $a \in Z(M)$. Thus $M=Z(M) \cup \operatorname{Ker} d$. Since d is nonzero, we conclude that $M=Z(M)$, by Brauer's trick (which states that a group cannot be the union of its two proper subgroups). Therefore, M is commutative.

Finally, keeping relation with Theorem 6, we developed [11, Theorem 2] as follows.
Theorem 7. Let M be a prime Γ-ring satisfying $\left({ }^{*}\right)$ and of characteristic not 2. If there exists a nonzero derivation $d: M \rightarrow M$ such that $\left[a,[a, d(a)]_{\beta}\right]_{\alpha} \in Z(M)$, for all $a \in M$ and $\alpha, \beta \in \Gamma$, then M is commutative.
Proof. In view of [12, Theorem 2], we consider the case that M is of characteristic not 3. Then for any $a \in M$ and $\alpha, \beta \in \Gamma$, and using (*) and the condition that M is of characteristic not 3, we have

$$
\begin{aligned}
d(a \alpha a \beta a) & =a \alpha a \beta d(a)+d(a \alpha a) \beta a \\
& =a \alpha a \beta d(a)+a \alpha d(a) \beta a+d(a) \alpha a \beta a-a \beta d(a) \alpha a+d(a) \beta a \alpha a \\
& +3 a \alpha d(a) \beta a=a \alpha[a, d(a)]_{\beta}-[a, d(a)]_{\beta} \alpha a \\
& =\left[a,[a, d(a)]_{\beta}\right]_{\alpha} \in Z(M) .
\end{aligned}
$$

With the same conditions above and we get

$$
\begin{aligned}
d((a \alpha a \beta a) \gamma(a \alpha a \beta a) \delta(a \alpha a \beta a))= & (a \alpha a \beta a) \gamma(a \alpha a \beta a) \delta d(a \alpha a \beta a)+(a \alpha a \beta a) \gamma \\
& d(a \alpha a \beta a) \delta(a \alpha a \beta a)+d(a \alpha a \beta a) \gamma(a \alpha a \beta a) \\
& \delta(a \alpha a \beta a) \\
= & (a \alpha a \beta a) \gamma(d(a \alpha a \beta a) \delta(a \alpha a \beta a)-(a \alpha a \beta a) \delta \\
& d(a \alpha a \beta a))+d(a \alpha a \beta a) \gamma((a \alpha a \beta a) \delta(a \alpha a \beta a)) \\
& -((a \alpha a \beta a) \delta(a \alpha a \beta a)) \\
& \gamma d(a \alpha a \beta a)+3(a \alpha a \beta a) \gamma(a \alpha a \beta a) \delta d(a \alpha a \beta a) \\
= & 0
\end{aligned}
$$

and hence M is commutative.
Acknowledgement. The authors wish to thank the anonymous referee for the constructive suggestions and helpful comments.

REFERENCES

[1] W. E. Barnes, On the Γ-rings of Nobusawa, Pacific J. Math., 18 (1966), 411-422.
[2] M. Bresar and J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc., 37 (1988), 321-322.
[3] M. Bresar and J. Vukman, On the left derivations and related mappings, Proc. of AMS., 110(1) (1990), 7-16.
[4] Y. Ceven, Jordan left derivations on completely prime gamma rings, C. U. Fen-Edebiyat Fakultesi, Fen Bilimleri Dergisi (2002)Cilt 23 Sayi2.
[5] Qing Deng, On Jordan left derivations, Math. J. Okayama Univ., 34 (1992), 145-147.
[6] K. W. Jun and B. D. Kim, A note on Jordan left derivations, Bull. Korean Math. Soc., 33(2) (1996), 221-228.
[7] Mustafa Asci and Sahin Ceran, The commutativity in prime gamma rings with left derivation, International Mathematical Forum, 2(3) (2007), 103-108.
8] N. Nobusawa, On a generalizaton of the ring theory, Oska J. Math., 1 (1964).
[9] A. C. Paul and Amitabh Kumer Halder, On Left Derivations of Γ-rings, Bull. Pure Appl. Math., 4(2) (2010), 320-328.
[10] M. Sapanci and A. Nakajima, Jordan derivations on completely prime gamma rings, Math. Japonica, 46(1) (1997), 47-51.
[11] Joso Vukman, Jordan left derivations on semiprime rings, Math. J. Okayama Univ., 39(1997), 1-6.
[12] Joso Vukman, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc., 109 (1990), 47-52.

