Punjab University Journal of Mathematics (ISSN 1016-2526) Vol. 46(1) (2014) pp. 59- 65

Two Torsion Free Prime Gamma Rings With Jordan Left Derivations

A. K. Halder Department of Mathematics University of Rajshahi Rajshahi-6205, Bangladesh halderamitabh@yahoo.com A. C. Paul Department of Mathematics University of Rajshahi Rajshahi-6205, Bangladesh acpaulrubd_math@yahoo.com

Abstract. Let M be a 2-torsion free prime Γ -ring and X a nonzero faithful and prime ΓM -module. Then the existence of a nonzero Jordan left derivation $d: M \to X$ satisfying some appropriate conditions implies M is commutative. M is also commutative in the case that $d: M \to M$ is a derivation along with some suitable assumptions.

AMS (MOS) Subject Classification Codes: 03E72, 54A40, 54B15

Key Words: *n*-torsion free, Jordan left derivations, prime Γ -rings, faithful ΓM -modules, commutativity.

1. INTRODUCTION

Let M and Γ be additive abelian groups. M is said to be a Γ -ring if there exists a mapping $M \times \Gamma \times M \to M$ (sending (x, α, y) into $x \alpha y$) such that

 $(a)(x+y)\alpha z = x\alpha z + y\alpha z,$

 $x(\alpha + \beta)y = x\alpha y + x\beta y,$

 $x\alpha(y+z) = x\alpha y + x\alpha z,$

 $(b)(x\alpha y)\beta z = x\alpha(y\beta z),$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

M is commutative if $a\alpha b = b\alpha a$, for all $a, b \in M$ and $\alpha \in \Gamma$. A subset *A* of a Γ -ring *M* is a left(right) ideal of *M* if *A* is an additive subgroup of *M* and $M\Gamma A$, the set of all $m\alpha a$ such that $m \in M, \alpha \in \Gamma$ and $a \in A$ ($A\Gamma M$) is contained in *A*. An ideal *P* of a Γ -ring *M* is prime if $P \neq M$ and for any ideals *A* and *B* of *M*, $A\Gamma B \subseteq P$, then $A \subseteq P$ or $B \subseteq P$. *M* is prime if $a\Gamma M\Gamma b = 0$ with $a, b \in M$, then a = 0 or b = 0. *M* is semiprime if $a\Gamma M\Gamma a = 0$ with $a \in M$, then a = 0. *M* is of characteristic not equal to *n* (or, n-torsion free) if nm = 0, for $m \in M$ implies m = 0, where *n* is an integer. The commutator $a\alpha x - x\alpha a$, for all $a \in M, x \in X$ and $\alpha \in \Gamma$ is denoted by $[a, x]_{\alpha}$. An element *a* in a Γ -ring *M* is called nilpotent if $(a\alpha)^n a = 0$, for all $\alpha \in \Gamma$ and for some *n*. The kernel of a derivation *d* on a Γ -ring *M* is denoted by Ker*d* and defined by Ker*d* = $\{a \in M : d(a) = 0\}$. The

subset $Z(M) = \{a \in M : a\alpha b = b\alpha a$, for any $b \in M$ and $\alpha \in \Gamma \}$ is called the centre of a Γ -ring M.

Let M be a Γ -ring and let X be an additive abelian group. X is called a ΓM -module if there exists a mapping $M \times \Gamma \times X \to X$ (sending (m, α, x) into $m\alpha x$) such that

 $(a)(m_1 + m_2)\alpha x = m_1\alpha x + m_2\alpha x$

 $m(\alpha + \beta)x = m\alpha x + m\beta x$

 $m\alpha(x_1 + x_2) = m\alpha x_1 + m\alpha x_2$

 $(b)(m_1\alpha m_2)\beta x = m_1\alpha(m_2\beta x),$

for all $m, m_1, m_2 \in M, \alpha, \beta \in \Gamma, x, x_1, x_2 \in \Gamma$.

X is faithful if $X\Gamma a = 0$ forces a = 0. X is prime if $m\Gamma M\Gamma x = 0$, for $m \in M$ and $x \in X$ implies that either x = 0 or $m\Gamma X = 0$. An additive mapping $d : M \to M$ is a derivation if $d(a\alpha b) = a\alpha d(b) + d(a)\alpha b$, a left derivation if $d(a\alpha b) = a\alpha d(b) + b\alpha d(a)$, a Jordan derivation if $d(a\alpha a) = a\alpha d(a) + d(a)\alpha a$ and a Jordan left derivation if $d(a\alpha a) = 2a\alpha d(a)$, for all $a, b \in M$ and $\alpha \in \Gamma$.

Y. Ceven [4] worked on Jordan left derivations on completely prime Γ -rings. He investigated the existence of a nonzero Jordan left derivation on a completely prime Γ -ring Mthat makes M commutative if $a\alpha b\beta c = a\beta b\alpha c$, for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$. With the same assumption, he showed that every Jordan left derivation on a completely prime Γ -ring is a left derivation on it. In this paper, he gave an example of Jordan left derivation for Γ -rings.

Mustafa Asci and Sahin Ceran [7] studied on a nonzero left derivation d on a prime Γ -ring M for which M is commutative with the conditions $d(U) \subseteq U$ and $d^2(U) \subseteq Z$, where U is an ideal of M and Z is the centre of M. They also proved the commutativity of M by the nonzero left derivation d_1 and right derivation d_2 on M with the conditions $d_2(U) \subseteq U$ and $d_1d_2(U) \subseteq Z$.

In [9], Sapanci and Nakajima defined a derivation and a Jordan derivation on Γ -rings and investigated a Jordan derivation on a certain type of completely prime Γ -ring which is a derivation. They also gave examples of a derivation and a Jordan derivation of Γ -rings.

Bresar and Vukman [2] proved that a Jordan derivation on a prime Γ -ring is a derivation. Furthermore, in [3], Bresar and Vukman showed that the existence of a nonzero Jordan left derivation of R into X implies R is commutative, where R is a ring and X is 2-torsion free and 3-torsion free left R-module. In [6], Jun and Kim proved their results without the property 3-torsion free.

Qing Deng [5] worked on Jordan left derivations d of prime ring R of characteristic not 2 into a nonzero faithful and prime left R-module X. He proved the commutativity of R with the Jordan left derivation d.

Joso Vukman [10] studied on Jordan left derivations on semiprime rings.

In this paper, we prepare a note on the basis of the results of Qing Deng [5] in Γ -rings. We show that the existence of a nonzero Jordan left derivation d on a 2-torsion free prime Γ -ring M into a faithful and prime ΓM -module X gives the commutativity of M. We also observe the commutativity of M when $d: M \to M$ is derivation.

Throughout this paper, we shall treat $a\alpha b\beta c = a\beta b\alpha c$, for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$, as (*).

2. JORDAN LEFT DERIVATIONS

In order to equare our main results, we use some steps as lemmas.

<u>60</u>

Lemma 1. Suppose that X is a faithful and prime ΓM -module. Let $a, b \in M$ and $x \in X$. If (the prime Γ -ring) M is 2-torsion free satisfying (*) and $a\alpha m\beta b\gamma m\delta x = 0$, for all $m \in M$ and $\alpha, \beta, \gamma, \delta \in \Gamma$, then a = 0 or b = 0 or x = 0.

Proof. We use the hypothesis

 $a\alpha m\beta b\gamma m\delta x = 0,$

for all $a, b, m \in M$, $x \in X$ and $\alpha, \beta, \gamma, \delta \in \Gamma$.

Replacing m by u + v in the above equation and then putting $v = m\beta a\alpha m\beta b\gamma m$, we get $a\alpha u\beta b\gamma m\beta a\alpha m\beta b\gamma m\delta x + a\alpha m\beta a\alpha m\beta b\gamma m\beta b\gamma u\delta x = 0$. This gives $a\alpha m\beta a\alpha m\beta b\gamma m\beta b\gamma u\delta x = 0$, for all $a, b, m, u \in M$, $x \in X$ and $\alpha, \beta, \gamma, \delta \in \Gamma$. If x = 0, we are done. Suppose that $x \neq 0$. Since X is faithful and prime, then $(a\alpha m\beta a)\alpha m\beta (b\gamma m\beta b) = 0$, for all $a, b, m \in M$ and $\alpha, \beta, \gamma \in \Gamma$. Primeness of M gives $a\alpha m\beta a = 0$ or $b\gamma m\beta b = 0$, and consequently, a = 0 or b = 0.

Lemma 2. Let M be a Γ -ring satisfying (*) and of characteristic not 3. If X is a 2-torsion free ΓM -module and $d: M \to X$ is a Jordan left derivation, then for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$,

 $\begin{array}{l} (a) \ d(a\alpha b + b\alpha a) &= 2a\alpha d(b) + 2b\alpha d(a), \\ (b) \ d(a\alpha b\beta a) &= a\beta a\alpha d(b) - b\alpha a\beta d(a), \\ (c) \ d(a\alpha b\beta c + c\alpha b\beta a) &= (a\beta c + c\beta a)\alpha d(b) - b\alpha a\beta d(c) - b\alpha c\beta d(a). \end{array}$

The Proof is obtained in Y. Ceven [4] by using the condition that M is of characteristic not 3.

Define $D_{\alpha}(x) = [a, x]_{\alpha}$, for all $a, x \in M$ and $\alpha \in \Gamma$.

Lemma 3. Let M be a Γ -ring which satisfies (*) and let $a \in M$ be a fixed element. Then (a) $D_{\alpha}(x)$ is a derivation, (b) $D_{\alpha}D_{\beta}(x) = a\alpha D_{\beta}(x) - D_{\beta}(x)\alpha a$, (c) $D_{\alpha}D_{\beta}(x) = D_{\beta}D_{\alpha}(x)$, (d) $D_{\alpha}D_{\beta}(x\gamma y) = D_{\alpha}D_{\beta}(x)\gamma y + 2D_{\alpha}(x)\beta D_{\gamma}(y) + x\gamma D_{\alpha}D_{\beta}(y)$, for all $x, y \in M$ and $\alpha, \beta, \gamma \in \Gamma$.

Proof. (a) For all $x, y \in M$ and $\alpha, \beta \in \Gamma$ and using (*), we have

$$D_{\alpha}(x\beta y) = [a, x\beta y]_{\alpha}$$

= $[a, x]_{\alpha}\beta y + x\alpha[a, y]_{\beta}$
= $D_{\alpha}(x)\beta y + x\alpha D_{\beta}(y).$

(b) By definition, we have

$$D_{\alpha}D_{\beta}(x) = D_{\alpha}([a, x]_{\beta})$$

= $[a[a, x]_{\beta}]_{\alpha}$
= $a\alpha[a, x]_{\beta} - [a, x]_{\beta}\alpha a$
= $a\alpha D_{\beta}(x) - D_{\beta}(x)\alpha a$,

for all $a, x \in M$ and $\alpha, \beta \in \Gamma$. (c) Using (*), we get

$$D_{\alpha}D_{\beta}(x) = D_{\alpha}([a, x]_{\beta})$$

= $[a, [a, x]_{\beta}]_{\alpha}$
= $a\alpha(a\beta x - x\beta a) - (a\beta x - x\beta a)\alpha a$
= $a\beta(a\alpha x - x\alpha a) - (a\alpha x - x\alpha a)\beta a$
= $[a, [a, x]_{\alpha}]_{\beta}$
= $D_{\beta}([a, x]_{\alpha})$
= $D_{\beta}D_{\alpha}(x),$

for all $a, x \in M$ and $\alpha, \beta \in \Gamma$. (d) By (b) and (*), we have

$$\begin{split} D_{\alpha}D_{\beta}(x\gamma y) &= a\alpha a\beta x\gamma y - a\alpha x\gamma y\beta a - a\beta x\gamma y\alpha a + x\gamma y\beta a\alpha a \\ &= (a\alpha a\beta x - a\alpha x\beta a - a\beta x\alpha a + x\beta a\alpha a)\gamma y \\ &+ 2a\alpha x\beta (a\gamma y - y\gamma a) - 2x\alpha a\beta (a\gamma y - y\gamma a) \\ &+ x\gamma (a\alpha a\beta y - a\alpha y\beta a - a\beta y\alpha a + y\beta a\alpha a) \\ &= D_{\alpha}D_{\beta}(x)\gamma y + 2(a\alpha x - x\alpha a)\beta (a\gamma y - y\gamma a) + x\gamma D_{\alpha}D_{\beta}(x) \\ &= D_{\alpha}D_{\beta}(x)\gamma y + 2D_{\alpha}(x)\beta D_{\gamma}(y) + x\gamma D_{\alpha}D_{\beta}(y), \end{split}$$

If $x, y \in M$ and $\alpha, \beta, \gamma \in \Gamma$.

for all $x, y \in M$ and $\alpha, \beta, \gamma \in \Gamma$.

Lemma 4. Let M be a Γ -ring satisfying (*) and of characteristic not 3, and $d: M \to X$ a Jordan left derivation, where X is a faithful and prime ΓM -module. If $d(a) \neq 0$, for some $a \in M$, then $[a, [a, b]_{\beta}]_{\alpha} \gamma [a, [a, b]_{\beta}]_{\alpha} = 0$, for all $b \in M$ and $\alpha, \beta, \gamma \in \Gamma$.

Proof. Let $a \in M$ be a fixed element. By Lemma 3, we have

$$D_{\alpha}D_{\beta}(x) = a\alpha(a\beta x - x\beta a) - (a\beta x - x\beta a)\alpha a, \qquad (2.1)$$

for all $x \in M$ and $\alpha, \beta \in \Gamma$. Using (*) in $(a\alpha b - b\alpha a)\beta a\alpha D(a) = a\alpha(a\alpha b - b\alpha a)\beta D(a)$, for all $a, b \in M$ and $\alpha, \beta \in \Gamma$ [Y. Ceven, Lemma 2.2(i)], we obtain

$$(a\alpha(a\beta x - x\beta a) - (a\beta x - x\beta a)\alpha a)\alpha d(a) = 0, \qquad (2.2)$$

for all $x \in M$ and $\alpha, \beta \in \Gamma$. From (2.1) and (2.2), we get

$$D_{\alpha}D_{\beta}(x)\alpha d(a) = 0, \qquad (2.3)$$

for all $x \in M$ and $\alpha, \beta \in \Gamma$. By Lemma 3(d) and (2.3), we have

$$(D_{\alpha}D_{\beta}(x)\gamma y + 2D_{\alpha}(x)\beta D_{\gamma}(y))\alpha d(a) = 0, \qquad (2.4)$$

for all $x, y \in M$ and $\alpha, \beta, \gamma \in \Gamma$. Replacing y by $D_{\alpha}(y\beta z)$ in (2.4) and by Lemma 3(a), we obtain

$$(D_{\alpha}D_{\beta}(x)\gamma(D_{\alpha}(y)\beta z + y\alpha D_{\beta}(z)) + 2D_{\alpha}(x)\beta D_{\gamma}(D_{\alpha}(y\beta z)))\alpha d(a) = 0$$
(2.5)

<u>62</u>

Using Lemma 3(c) in (2.5), and then using (2.3), we get

(

$$(D_{\alpha}D_{\beta}(x)\gamma(D_{\alpha}(y)\beta z + y\alpha D_{\beta}(z) + D_{\alpha}D_{\beta}(x)\gamma y\alpha D_{\beta}(z)))\alpha d(a) = 0 (2.6)$$

Replacing $D_{\alpha}(z)$ for z in (2.6) and then by Lemma 3(c) and (2.3), we obtain

$$(D_{\alpha}D_{\beta}(x)\gamma D_{\alpha}(y)\alpha D_{\beta}(z))\alpha d(a) = 0$$
(2.7)

Replacing y by $D_{\alpha}(y)$ in (2.6), and then by Lemma 3(c) and (2.7), we get

$$(D_{\alpha}D_{\beta}(x))\gamma(D_{\alpha}D_{\beta}(y))\alpha z\alpha d(a) = 0$$
(2.8)

Since (2.8) holds for all $z \in M$, we are forced to conclude that $d \neq 0$ implies

$$D_{\alpha}D_{\beta}(x))\gamma(D_{\alpha}D_{\beta}(y)) = 0$$

for all $x, y \in M$ and $\alpha, \beta, \gamma \in \Gamma$.

In particular, $(D_{\alpha}D_{\beta}(b))\gamma((D_{\alpha}D_{\beta}(b)) = 0$, for all $b \in M$ and $\alpha, \beta, \gamma \in \Gamma$. This gives $[a, [a, x]_{\beta}]_{\alpha}\gamma[a, [a, x]_{\beta}]_{\alpha} = 0$, for all $x \in M$ and $\alpha, \beta, \gamma \in \Gamma$.

Lemma 5. Let M be a prime Γ -ring satisfying (*) and of characteristic not 3. Suppose that X is a faithful and prime ΓM -module. If there exists a nonzero Jordan left derivation $d: M \to X$, then M has no nonzero nilpotent elements(more precisely, M has no nonzero zero divisors).

Proof. We shall prove this lemma by contradictory supposition. Suppose that M contains a nonzero element a with $a\alpha a = 0$, for all $\alpha \in \Gamma$. Then $0 = d(a\alpha a) = 2a\alpha d(a)$ and so

$$a\alpha d(a) = 0, \tag{2.9}$$

for all $\alpha \in \Gamma$.

Replacing c by $b\beta a$ in Lemma 2(c) and then using (*) and $a\alpha d(a) = 0$, we have

$$\begin{aligned} d(a\alpha b\beta b\beta a) + d(b\beta a\alpha b\beta a) &= d(a\alpha b\beta b\beta a + b\beta a\alpha b\beta a) \\ &= (a\beta b\beta a + b\beta a\beta a)\alpha d(b) - b\alpha a\beta d(b\beta a) - b\alpha b\beta a\beta d(a) \end{aligned}$$

Thus

$$d(a\alpha b\beta b\beta a) + d(b\beta a\alpha b\beta a) = a\beta b\beta a\alpha d(b)$$
(2.10)

Lemma 2(b) with $a\alpha a = 0$ and $a\alpha d(a) = 0$ gives $d(a\alpha b\beta a) = 0$. Replacing b by $b\beta b$, we obtain $d(a\alpha b\beta b\beta a) = 0$. Again $d(b\beta a\alpha b\beta a) = 2b\beta a\alpha d(b\beta a) = 0$. Thus using $d(a\alpha b\beta b\beta a) = 0$ and $d(b\beta a\alpha b\beta a) = 0$ in (10), we get

$$a\beta b\beta a\alpha d(b) = 0 \tag{2.11}$$

Replacing b by b + c in (2.11), and using (*), we obtain

$$a\alpha b\beta a\beta d(c) + a\alpha c\beta a\beta d(b) = 0, \qquad (2.12)$$

for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$.

Replacing $a\gamma c + c\gamma a$ for c in (2.12), after that by Lemma 2(a), $a\alpha a = 0$ and (*), we get $a\alpha b\beta a\beta c\gamma d(a) = 0$, for all $a, b, c \in M$ and $\alpha, \beta, \gamma \in \Gamma$ and so by Lemma 1,

$$d(a) = 0 (2.13)$$

Interchanging a and b in Lemma 2(b) and then by (2.13) and $a\alpha d(a) = 0$, we get $d(b\alpha a\beta b) = 0$. This implies that

$$a\alpha c\beta a\beta d(b\alpha a\beta b) = 0, \qquad (2.14)$$

for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$. Replacing b by $b\alpha a\beta b$ in (2.12) and using (2.14), we get $a\alpha b\alpha a\beta b\beta a\beta d(c) = 0$, for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$. This implies that $a\beta d(c) = 0$, by Lemma 1. Replacing c by $c\alpha c$ in $a\beta d(c) = 0$, and then using (*), we have

$$a\alpha c\beta d(c) = 0, \tag{2.15}$$

for all $a, c \in M$ and $\alpha, \beta \in \Gamma$.

Replacing c by b + c in (16), we get $a\alpha b\beta d(c) + a\alpha c\beta d(b) = 0$. Again, replacing c by $a\alpha c$ in $a\alpha b\beta d(c) + a\alpha c\beta d(b) = 0$ and using $a\alpha a = 0$, we get $a\alpha b\beta d(a\alpha c) = 0$, for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$. This implies that $d(a\alpha c) = 0$, by the faithfulness and the primeness of X.

Applying d(a) = 0 and $a\alpha d(c) = 0$, we obtain $d(a\alpha c) = d(c\alpha a + a\alpha c) = 2c\alpha d(a) + 2a\alpha d(c)$. Replacing a by $b\beta a$ in $d(c\alpha a) = 0$ and c by $b\beta c$ in $d(a\alpha c) = 0$ and adding the obtained results, we have

$$d(a\alpha b\beta c + c\alpha b\beta a) = 0, \qquad (2.16)$$

for all $a, b \in M$ and $\alpha, \beta \in \Gamma$.

The faithfulness and primeness of X and (*) in (2.11) gives $a\beta d(b) = 0$. With the help of the Lemma 2(c) and $a\beta d(b) = 0$, (2.16) gives $a\alpha c\beta d(b) = 0$, for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$. Hence d(b) = 0, for all $b \in M$. But this is a contradiction.

We now state and prove our main result.

Theorem 6. Let M be a prime Γ -ring satisfying (*) and of characteristic not 2, and X a nonzero left ΓM -module. Suppose that X is faithful and prime. If there exists a nonzero Jordan left derivation $d : M \to X$, then M is commutative.

Proof. In order to develop [1, Theorem 2.2], it suffices to consider the case that M is of characteristic not 3. Consider an element $a \in M$ such that $d(a) \neq 0$. Then by Lemma 4, we get $[a, [a, b]_{\beta}]_{\alpha}\gamma[a, [a, b]_{\beta}]_{\alpha} = 0$, for all $b \in M$ and $\alpha, \beta, \gamma \in \Gamma$. By Lemma 5, we get $[a, [a, b]_{\beta}]_{\alpha} = 0$, for all $b \in M$ and $\alpha, \beta \in \Gamma$. This implies that $a\alpha[a, b]_{\beta} = [a, b]_{\beta}\alpha a$, for all $b \in M$ and $\alpha, \beta \in \Gamma$ and so $a \in Z(M)$. Thus $M = Z(M) \cup$ Kerd. Since d is nonzero, we conclude that M = Z(M), by Brauer's trick (which states that a group cannot be the union of its two proper subgroups). Therefore, M is commutative.

Finally, keeping relation with Theorem 6, we developed [11, Theorem 2] as follows.

Theorem 7. Let M be a prime Γ -ring satisfying (*) and of characteristic not 2. If there exists a nonzero derivation $d: M \to M$ such that $[a, [a, d(a)]_{\beta}]_{\alpha} \in Z(M)$, for all $a \in M$ and $\alpha, \beta \in \Gamma$, then M is commutative.

Proof. In view of [12, Theorem 2], we consider the case that M is of characteristic not 3. Then for any $a \in M$ and $\alpha, \beta \in \Gamma$, and using (*) and the condition that M is of characteristic not 3, we have

$$d(a\alpha a\beta a) = a\alpha a\beta d(a) + d(a\alpha a)\beta a$$

= $a\alpha a\beta d(a) + a\alpha d(a)\beta a + d(a)\alpha a\beta a - a\beta d(a)\alpha a + d(a)\beta a\alpha a$
+ $3a\alpha d(a)\beta a = a\alpha [a, d(a)]_{\beta} - [a, d(a)]_{\beta}\alpha a$
= $[a, [a, d(a)]_{\beta}]_{\alpha} \in Z(M).$

With the same conditions above and we get

$d((a\alpha a\beta a)\gamma(a\alpha a\beta a)\delta(a\alpha a\beta a))$	=	$(alpha aeta a)\gamma(alpha aeta a)\delta d(alpha aeta a)+(alpha aeta a)\gamma$
		$d(a\alpha a\beta a)\delta(a\alpha a\beta a) + d(a\alpha a\beta a)\gamma(a\alpha a\beta a)$
		$\delta(alpha aeta a)$
	=	$(alpha aeta a)\gamma(d(alpha aeta a)\delta(alpha aeta a)-(alpha aeta a)\delta$
		$d(a\alpha a\beta a)) + d(a\alpha a\beta a)\gamma((a\alpha a\beta a)\delta(a\alpha a\beta a))$
		$-((alpha aeta a)\delta(alpha aeta a))$
		$\gamma d(a\alpha a\beta a) + 3(a\alpha a\beta a)\gamma(a\alpha a\beta a)\delta d(a\alpha a\beta a)$
	=	0

and hence M is commutative.

Acknowledgement. The authors wish to thank the anonymous referee for the constructive suggestions and helpful comments.

REFERENCES

- [1] W. E. Barnes, On the Γ-rings of Nobusawa, Pacific J. Math., 18 (1966), 411-422.
- [2] M. Bresar and J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc., 37 (1988), 321-322.
- [3] M. Bresar and J. Vukman, On the left derivations and related mappings, Proc. of AMS., 110(1) (1990), 7-16.
- [4] Y. Ceven, Jordan left derivations on completely prime gamma rings, C. U. Fen-Edebiyat Fakultesi, Fen Bilimleri Dergisi (2002)Cilt 23 Sayi2.
- [5] Qing Deng, On Jordan left derivations, Math. J. Okayama Univ., 34 (1992), 145-147.
- [6] K. W. Jun and B. D. Kim, *A note on Jordan left derivations*, Bull. Korean Math. Soc., **33(2)** (1996), 221-228.
 [7] Mustafa Asci and Sahin Ceran, *The commutativity in prime gamma rings with left derivation*, International Mathematical Forum, **2(3)** (2007), 103-108.
- [8] N. Nobusawa, On a generalizaton of the ring theory, Oska J. Math., 1 (1964).
- [9] A. C. Paul and Amitabh Kumer Halder, On Left Derivations of Γ -rings, Bull. Pure Appl. Math., **4(2)** (2010), 320-328.
- [10] M. Sapanci and A. Nakajima, Jordan derivations on completely prime gamma rings, Math. Japonica, 46(1) (1997), 47-51.
- [11] Joso Vukman, Jordan left derivations on semiprime rings, Math. J. Okayama Univ., 39(1997), 1-6.
- [12] Joso Vukman, *Commuting and centralizing mappings in prime rings*, Proc. Amer. Math. Soc., **109** (1990), 47-52.